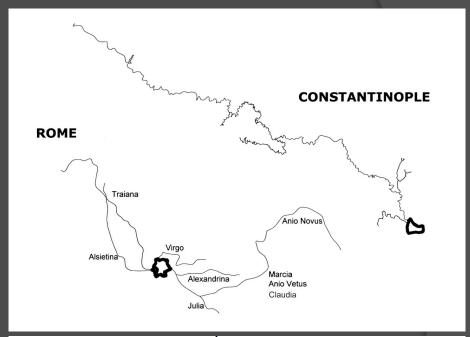
AQUEDUCT CONSTRUCTION IN THE LATE-ANTIQUE EAST

an agent-based modelling and geoarchaeological approach to building evidence for the Water Supply of Constantinople

About the water supply

- Had no sustainable fresh local water sources
- Hadrian provided aqueduct in the 2nd century
- Population boomed in the 4th century
- Textual sources claimed the city was "dying of thirst"
- Long distance water supply built in the mid 4th century and greatly expanded in the early 5th century

More about the water supply


- Made up of two structural elements: aqueduct bridges and channels
- Channels mostly built in "cut and cover" method
- Only two main structural materials: stone and mortar
- No structural brick

Why it matters

- One of the largest construction projects of the ancient world
- Massively understudied
- Potentially changes narratives on late antique construction
- Recent construction projects threaten its existence

Phase	Total Length (km)	Total Volume (m³)
Water Supply - 4th Century Line	271	1,039,000
Water Supply - 5 th Century Line	183	2,124,000

What we plan to do

- Employ agent-based modeling to the construction of the Water Supply of Constantinople
- Combine a wide variety of sources to represent day-to-day activities and major organizational decisions
- Represent everyday life in different levels of agency

What we know

- Recent field survey data
- Geographical and Geological information
- Quantity/type of construction materials

*				
Action	Man-days (in thousands)			
Water Supply – 4 th Century				
Site Planning and Preparations	376			
Mortar Preparations	402			
Building Preparation	614			
Construction	1,271			
Total	2,663			
Water Supply – 5 th Century				
Site Planning and Preparations	1,407			
Mortar Preparations	806			
Building Preparation	1,220			
Construction	2,826			
Total	6,259			

Material	Volume (m ³)	Number of Units	Mass (Tonnes)	
Water Supply - 4th Century Line				
Channel Lining Mortar	18,500			
Structural Mortar	362,000			
Facing Stones	34,000	339,000	88,500	
Rubble Stone	626,000		1,633,000	
Iron Clamps	220	305,000	1,700	
Water Supply - 5 th Century Line				
Channel Lining Mortar	13,600			
Structural Mortar	749,000			
Facing Stones	66,000	666,000	174,000	
Rubble Stone	1,295,000		3,380,000	
Iron Clamps	440	610,000	3,400	

- Reliance on local raw materials
- Manpower requirements (Energetics)
- Length of time of construction (4th century)

What we almost know

- Construction divided into "contract sections"
- Work processes

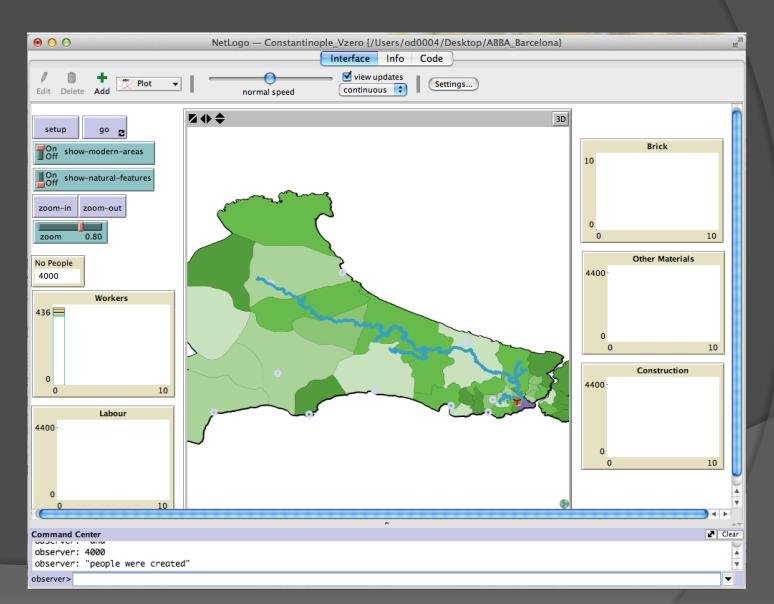
- Workforce: non-slave, skilled and unskilled
- Workforce organized by guild/ workshop

What we don't know enough about

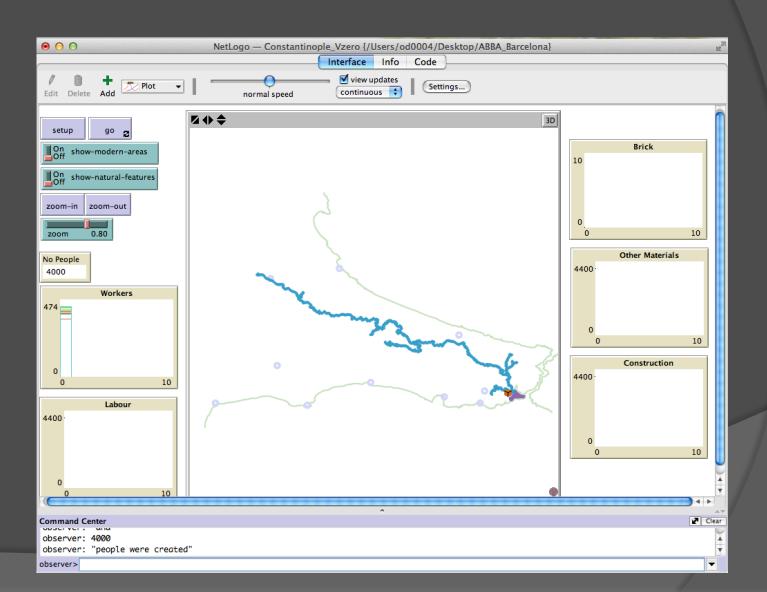
- Exact location of raw materials
- Pathways of transportation
- Availability of materials and laborers
- Life and career of workforce
- The scheduling of work and appointment of laborers

Further reasons why this matters (From an interdisciplinary perspective)

- Theoretical: emergence/foundation of cities
- Subject-wise: broader research trajectory of Balkan cities
- Methodological: generative social science


More on what we plan to do

- Use the version zero model as a simple visualization to discuss relevance of elements and issues (constructive validity)
- Gather information from different sources while trying to patch-up parts of the puzzle
- Experimenting with different combinations of scenarios to support generation of hypotheses related to organization of construction
- More specific contributions towards estimating limit values and manpower calculations


More specifically...

- Scenarios around
 - trade guilds (size, location, spread of skills and tacit knowledge)
 - contract sections (average length, logistics)
 - lives of workers (careers, working conditions, mobility)
- Studying possible roads and pathways via GIS to estimate labor for transportation

ABBA - CLAWS Version O

ABBA - CLAWS Version O

About the model design

- Agents: People (workers, residents of Constantinople) and the state
- Environment: Thrace with the city other towns, production areas, the construction site and the terrain
- Relationships: Guilds and social relationships, the state as designer/organizer
- Interaction: Within guilds, between different construction processes and teams
- Historicity: Daily lives of people and flows of material with seasonality and exogenous shocks over 25 years

Summary and Pre-conclusions

- Our research investigates the construction process of one of the biggest projects of antiquity
- Can change our general understanding of the capabilities of the polities of the period
- We have an interdisciplinary approach integrating social simulation with archaeology
- We aim to use ABM as a generative tool as well as simulating interdependent construction processes across a large and difficult terrain
- We developed the version 0 of our model, the basis for the upcoming project

Thank you

J. Riley Snyder

University of Bologna

University of Edinburgh

rileysnyder@gmail.com

Özge Dilaver

University of Surrey

British School at Athens

o.dilaverkalkan@surrey.ac.uk